
Confidential	manuscript	submitted	to	Surveys	in	Geophysics	

 1 
Copyright (2021).  All rights reserved. 

 

Nowcasting	Earthquakes	by	Visualizing	the	Earthquake	Cycle	with	
Machine	Learning:		

A	Comparison	of	Two	Methods	
 

by	

	

John	B	Rundle1,2,3,		Andrea	Donnellan2,	Geoffrey	Fox4	and	James	P.	Crutchfield1	
	

1University	of	California,	Davis,	CA	
	

2Jet	Propulsion	Laboratory,	California	Institute	of	Technology,	Pasadena,	CA	
	

3Santa	Fe	Institute,	Santa	Fe,	NM	
	

4Indiana	University,	Bloomington,	IN	
	
	
	
	
	

Abstract	
The	earthquake	cycle	of	stress	accumulation	and	release	 is	associated	with	the	elastic	

rebound	hypothesis	proposed	by	H.F.	Reid	following	the	M7.9	San	Francisco	earthquake	of	
1906.		However,	observing	details	of	the	actual	values	of	time-	and	space-dependent	tectonic	
stress	is	not	possible	at	the	present	time.		In	two	previous	papers,	we	have	proposed	methods	
to	image	the	earthquake	cycle	in	California	by	means	of	proxy	variables.		These	variables	are	
based	on	correlations	 in	patterns	of	 small	 earthquakes	 that	occur	nearly	 continuously	 in	
time.		The	purpose	of	the	present	paper	is	to	compare	these	two	methods	by	evaluating	their	
information	 content	 using	 decision	 thresholds	 and	 Receiver	 Operating	 Characteristic	
methods	 together	with	 Shannon	 information	 entropy.	 	 Using	 seismic	 data	 from	 1950	 to	
present	in	California,	we	find	that	both	methods	provide	nearly	equivalent	information	on	
the	rise	and	fall	of	earthquake	correlations	associated	with	major	earthquakes	in	the	region.		
We	conclude	that	the	resulting	timeseries	can	be	viewed	as	proxies	for	the	cycle	of	stress	
accumulation	and	release	associated	with	major	tectonic	activity.	
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Introduction	
Earthquake	 hazard	 analysis	 is	 hobbled	 by	 our	 inability	 to	 directly	 observe	 the	

accumulation	and	release	of	tectonic	stress	in	regions	of	seismic	activity	(Scholz,	2019).		As	
a	 result,	 research	 in	 this	 area	 has	 focused	 on	 several	 other	 lines	 of	 investigation.	 	 In	
forecasting,	 a	 major	 emphasis	 is	 now	 being	 placed	 on	 topologically	 realistic	 numerical	
simulations	(Tullis	et	al.,	2012).			

Alternatively,	recent	research	has	developed	the	idea	of	earthquake	nowcasting,	which	
uses	proxy	variables	to	infer	the	current	state	of	the	earthquake	cycle	(Rundle	et	al.,	2016,	
2018,	2019,	2020;	Pasari	and	Mehta,	2018;	Pasari,	2019,	2020;	Pasari	and	Sharma,	2020;		
Luginbuhl et al. 2019;  2020).	 	In	the	nowcasting	approach,	one	uses	observations	of	small	
earthquake	seismicity	to	estimate	the	conditional	probability	that	a	major	earthquake	might	
occur	after	the	current	number	of	small	earthquakes	has	occurred,	given	that	one	has	not	
occurred	since	the	last	major	event.		

A	comprehensive	review	of	the	current	state	of	earthquake	nowcasting,	forecasting,	and	
prediction	is	given	by	Rundle	et	al.	(2021).		Perez-Oregon	et	al.	(2020)	have	also	shown	that	
nowcasting	methods	can	be	extended	to	forecasting	methods	as	well.		These	methods	have	
begun	to	be	applied	to	India	(Pasari,	2019),	Japan	(K.	Nanjo,	2020;	personal	comm.,	2020)	
and	Greece	(G.	Chouliaras,	personal	comm.	2019).	

Fundamentally,	nowcasting	has	been	based	on	the	concept	of	natural	time	(Varotsos	et	
al.,	 2001;	 2002;	 2011,	 2013;	 2014;	 2020a,b;	 Sarlis	 et	 al.,	 2018).	 	 Beginning	 with	 the	
nowcasting	idea,	Perez-Oregon	et	al.	(2020)	have	now	shown	that	nowcasting	models	can	be	
extended	into	forecasting	models	for	two	types	of	model	systems,	one	being	the	slider	block	
model	of	Rundle	and	Jackson	(1977)	and	 	Olami-Feder	Christensen	(1992),	and	the	other	
being	a	system	in	which	the	events	obey	a	log-normal	distribution.		These	are	toy	models	as	
described	above	but	may	be	 applicable	 to	 real	data.	 	The	 forecast	methods	are	 tested	by	
means	of	the	Receiver	Operating	Characteristic	method	that	we	also	describe	below.	

Recently,	Rouet-LeDuc	et	al.	 (2017)	have	developed	a	 timeseries	prediction	technique	
using	machine	 learning	 for	acoustic	 emissions	 from	events	 in	 laboratory	experiments	on	
regular,	nearly	periodic	stick-slip	friction.		They	also	applied	a	similar	technique	for	Episodic	
Tremor	and	Slip	events	in	the	Pacific	Northwest	(Rouet-LeDuc	et	al.,	2019),	which	are	also	
relatively	regular	in	time.			

In	a	previous	paper,	Rundle	and	Donnellan	(2020)	showed	that	a	timeseries	resembling	
the	long-hypothesized	earthquake	cycle	could	be	constructed	from	the	time	dependence	of	
horizontal	radius	of	gyration	RG(t)of	bursts	of	small	earthquakes	that	are	clustered	in	space	
and	time.		In	fact,	the	quantity	RG(t)	is	often	used	in	the	calculation		of	correlation	length	for	
models	 in	 statistical	mechanics	 (Rundle	 and	 Donnellan,	 2020).	 	 	 In	 a	 subsequent	 paper,	
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Rundle	et	al.	(2021)	have	developed	an	alternate	method	based	on	constructing	a	correlation	
time	series	c(t)	of	small	earthquakes	in	the	seismically	active	region	of	California.		Both	of	
these	methods	use	patterns	of	small	earthquakes,	and	the	correlations	among	them,	to	define	
proxy	timeseries	that	have	many	of	the	characteristics	expected	of	the	cycle	of	tectonic	stress	
accumulation	and	release.	

To	summarize	our	results:	The	two	timeseries	so	defined	imply	that	regional	correlation	
of	seismic	activity	generally	decreases	prior	to	major	earthquakes	in	California.	 	Just	after	
occurrence	a	major	earthquake,	correlation	of	seismic	activity	discontinuously	increases,	as	
does	 the	quantity	RG(t).	 	Both	of	 the	 resulting	timeseries	 strongly	 resemble	 the	expected	
earthquake	cycle	of	stress	accumulation	and	release.		We	then	applied	standard	timeseries	
methods	based	on	constructing	Receiver	Operating	Characteristic	(ROC)	diagrams	together	
with	a	Shannon	Information	metric	(e.g.,	Rundle	et	al.,	2019)	to	show	that	signals	of	future	
large	earthquakes	may	be	present.	 	The	method	 implies	some	 level	of	 signal	detection	of	
future	large	earthquakes,	albeit	with	errors,	in	both	RG(t)	and	c(t).			

Methods	
Summary	of	the	Radius	of	Gyration	RG(t)	Method.		We	begin	with	our	definition	of	a	

seismic	burst,	or	cluster	of	small	events.		Our	definition	of	a	seismic	burst	is	the	occurrence	
of	an	unusual	sequence	of	generally	small	earthquakes	closely	clustered	in	space	and	time	
(e.e.,	Hill	and	Prejean,	2007;		Peresan	and	Gentili,	2018;	Zaliapin	and	Ben-Zion,	2016a,b).			

We	define	two	general	types	of	bursts,		Type	I	and	Type	II:	
• We	define	a		Type	I	seismic	burst	as	a	mainshock-aftershock	sequence,	in	which	

the	 initiating	event	has	 the	 largest	magnitude	 in	 the	 sequence,	 and	 is	 typically	
followed	by	a	power-law	Omori	decay	of	occurrence	of	 smaller	events	 (Omori,	
1900;	Scholz,	2019).			

• A	Type	II	seismic	burst	is	defined	as	a	sequence	of	similar	magnitude	events	in	
which	the	largest	magnitude	event	is	not	the	initiating	event,	and	in	which	there	
is	not	typically	a	subsequent	power-law	decay.	

The	earthquakes	defining	the	bursts	are	small,	usually	of	magnitudes	characterizing	the	
catalog	 completeness	 level.	 	 For	 the	 Southern	 California	 region,	 we	 consider	 small	
earthquakes	of	magnitudes	M	³	3.3.		This	magnitude	threshold	was	chosen	as	a	value	high	
enough	to	ensure	completeness	of	the	catalog	data	used.		The	catalog	containing	these	events	
is	downloaded	from	the	US	Geological	Survey	earthquake	search	database1.		The	method	we	
describe	proceeds	 in	5	stages,	and	only	a	summary	 is	provided	here.	For	a	more	detailed	
discussion,	we	refer	readers	to	Rundle	and	Donnellan	(2020).			

The	 first	stage	consists	of	an	automated	definition	and	classification	of	seismicity	 into	
candidates	of	seismic	bursts.		The	second	stage	involves	automated	rejection	of	outliers.	The	
third	 stage	 selects	 the	members	 of	 the	 ensemble	 of	 accepted	 bursts	 which	will	 then	 be	
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displayed	as	a	time	series.		The	fourth	stage	applies	an	exponential	moving	average	to	the	
bursts	 to	 construct	 the	 burst	 time	 series.	 	 The	 fifth	 stage	 involves	 optimization	 of	 the	
ensemble	 of	 possible	 bursts	 with	 a	 simple	 cost	 function.	 	 We	 note	 that	 both	
classification/clustering	and	optimization/regression	are	well	known	components	of	new	
ideas	 in	 machine	 learning,	 along	 with	 other	 ideas	 in	 deep	 learning	 and	 decision	 tree	
analysis2.	

We	begin	by	coarse	-graining	time	in	the	catalog	into	units	of	single	days,	and	consider	
an	 elementary	 burst	 to	 be	 a	 day	 on	 which	 there	 are	 2	 or	 more	 small	 earthquakes	 of	
magnitude	M	³	3.3	within	the	region	of	interest,	which	for	this	study	is	the	600	km	radius	
Southern		California	region.		Note	that,	over	the	last	10	years,	the	rate	of	occurrence	of	these	
small	earthquakes	have	been	about	0.75	such	earthquakes	per	day	in	that	geographic	region.		

In	Stage	I,	classification,	the	daily	seismic	catalog	is	searched	to	find	bursts	consisting	of	
connected	 sequences	 of	 days	 in	 which	 2	 or	 more	 M	 ³	 3.3	 events	 occur	 without	 any	
intervening	days	of	fewer	events.	For	each	such	set	of	days,	we	also,	as	a	rule,	include	the	
preceding	day	to	allow	for	any	foreshock	events.	

		This	stage	yields	many	hundreds	of	candidate	bursts.	This	process	will	of	necessity	yield	
bursts	that	include	purely	random,	uncorrelated	events.	To	remove	these,	the	bursts	are	then	
filtered	in	the	following	two	ways.	

In	Stage	II	of	the	method,	rejection	of	outliers,	we	detect	and	remove	small	earthquakes	
that	may	be	random	outliers.	We	begin	by	computing	the	spatial	centroid,	or	center-of-mass,	
of	each	burst.		In	this	calculation,	all	events	having	M	³	3.3	are	treated	as	a	particle	or	unit	of	
mass,	each	of	equal	computational	weight.			

We	now	compute	the	horizontal	distance	or	radius	("Ri")	of	each	small	event	from	the	
centroid,	then	the	median	distance	("MedianR")	is	calculated	from	the	set	{Ri}.		A	factor	FCL	
is	defined	and	applied	to	each	of	the	candidate	bursts.		Using	all	the	accepted	small	events	in	
the	burst,	 the	burst	radius-of-gyration	RG	 is	computed	about	 the	burst	centroid.	 	RG	 is	 the	
square	root	of	the	mean	square	radius	of	the	small	events	in	the	burst.		These	filtered	bursts	
now	define	 the	ensemble	of	 accepted	 clusters.	Radius	of	 gyration	 is	 a	parameter	used	 to	
study	fracture	mechanics	(e.g.	Kucherovand	Ryvkin,	2014;	Sayers	and	Calvez,	2010).	

In	Stage	III	of	the	method,	the	collection	of	bursts	is	filtered	according	to	their	mass	ratio	
or	density	r,	which	we	define	as	the	ratio	of	the	cluster	mass	µ		to	the	radius-of-gyration	RG	,				
r	=	µ	/RG.		Mass	is	defined	as	the	number	of	small	events	in	the	cluster	or	burst.			

To	 implement	 this	 filter,	 we	 define	 a	 filter	 or	 threshold	 value	 corresponding	 to	 a	
particular	value	of	mass	ratio	r.		Each	burst	is	tested,	with	the	criterion	for	acceptance	being	
that	the	density	is	greater	than	the	threshold	value.		With	this	condition,	we	accept	only	high-
density	clusters,	which	are	typically	the	most	compact	clusters.		Clusters	that	are	accepted	
by	 this	 criterion	 correspond	 to	 long	 wavelength	 fluctuations	 in	 the	 time	 series,	 so	 this	
condition	represents	a	low-pass	filter	(Rundle	and	Donnellan,	2020).		
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In	Stage	IV,	an	exponential	moving	average2	(EMA)	was	applied	to	the	filtered	burst	time	
series	data.	The	choice	to	be	made	with	this	method	is	the	value	of	N,	the	number	of	averaging	
steps.	For	our	purposes,	a	1-year	averaging	interval	was	adopted	for	the	temporal	resolution,	
corresponding	to	an	average	of	N	~23	bursts	per	year.		

In	Stage	V	of	the	approach,	the	collection	or	ensemble	of	the	bursts	was	optimized	and	
combined	into	a	single	time	series	using	a	simple	cost	function.	The	result	of	this	stage	is	an	
ensemble	in	which	the	largest	earthquakes	of	M³7	occur	at	approximately	the	same	value	of	
RG	for	each	event. The	strategy	involves	defining	a	cost	function	that	seeks	to	optimize	the	
value	of	radius	of	gyration	RG	for	the	largest	earthquakes	M³7,	just	before	they	occur.		The	
cost	function	that	used	requires	that	the	radius	of	gyration	of	these	large	earthquakes	just	
prior	to	failure	be	a	relatively	uniform	value.	This	would	allow	a	crude	nowcast	or	forecast	
of	when	a	large	such	earthquake	might	occur	in	the	future.	

In	general,	 it	was	found	that	there	is	a	recharge	period	where	average	RG(t)	decreases	
prior	 to	 each	 magnitude	M³7,	 followed	 by	 a	 sudden	 discharge	 where	 RG(t)	 increases	 in	
average	due	 to	 the	 large	aftershock	bursts	 following	 the	mainshock.	Between	 these	 large	
mainshocks,	 it	can	be	seen	that	 lesser	magnitude	earthquakes	result	 in	 lesser	but	similar	
effects.			

For	the	methods	described	here,	we	downloaded	the	earthquake	catalog	from	the	USGS	
web	 site,	 collected	 and	 filtered	 the	 data	 to	 construct	 acceptable	 timeseries	 of	 small	
earthquakes.1		The	largest	of	these	earthquakes	since	1994	are	given	in	Table	1.		As	examples	
of	 bursts	 that	were	 used	 in	 computing	RG(t),	 	 we	 show	 in	 Figure	 1	 four	 bursts	 of	 small	
earthquakes	 in	California.	 	The	top	two	represent	moderate	sized	bursts,	 the	bottom	two	
represent	aftershocks	of	major	earthquakes	M	³	6.0			

Summary	of	the	Correlation	Timeseries	c(t)	Method.  This method begins by defining 
a	spatial	coarse	graining,		assigning	an	array	of	grid	boxes	of	given	latitude	and	longitude	Dx		
(in	degrees)	to	the	area	of	interest.		Each	of	these	grid	boxes	(tiles	or	partitions)	is	required	
to	have	a	minimum	number	of	small	earthquakes	over	the	entire	time	interval	used.	 	This	
procedure	produces	a	set	of	NX	"active"	grid	boxes.			

We	then	extract	data	from	the	seismic	catalog,	which	is	the	set	of	values	{ti,	Mi,	zi},	where	
i	=	1,...,	NE,	in	which	NE	is	the	number	of	earthquakes	in	the	catalog.		Here	ti	is	the	origin	time	
of	the	earthquake,	Mi,	 is	the	magnitude,	and	zi	 is	hypocentral	location	(latitude-longitude-
depth).		Note	that	zi	is	a	container	variable	for	an	epicentral	(horizontal)	location	xi	and	depth	
di.			

The	catalog	is	then	digitized	in	time	at	increments	Dt.		A	given	earthquake	is	then	assigned	
to	a	time	interval	[tj-Dt,	tj],	j	=	1,...,	JT	and	to	the	grid	box	centered	at	xn,	n	=	1,...,	NX.		These	
assignments	 then	 yield	 a	 collection	 of	 time	 series	 	F(𝒙", 𝑡%),	 which	 for	 convenience	 we	
designate	 as	F(𝒙", 𝑡).	 	 Thus	 we	 have	 a	 total	 of	NX	 	 time	 series,	 digitized	 at	 equidistant	
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intervals	Dt,	extending	over	the	interval	t0,	...,	(t0	+	Dt	JT).		In	words,	F(𝒙", 𝑡%)	is	the	number	of	
earthquakes	in	the	grid	box	centered	on	xn, occurring between tj-Dt and tj.			

		The	next	step	is	to	compute	the	(eigen)	patterns.		Principal	Component	Analysis	(PCA)	
is	used	to	analyze	the	correlation	matrix	Cnm(t),	which	 involves	centered,	univariant	 time	
series	Φ.(𝒙", 𝑡).		Φ.(𝒙", 𝑡)	is	obtained	from	the	timeseries	F(𝒙", 𝑡)	by	removing	the	mean	and	
normalizing	to	unit	variance	(Rundle	et	al.,	2021).	 	Cnm(t)	 is	 then	diagonalized	to	 find	 its	
eigenvectors	 (eigenpatterns)	𝒆D(𝑡),	 i	 =	1,...,NX,	 and	eigenvalues	𝜆D(𝑡).	 	Because	Cnm(t)	 	 is	 a	
positive	definite,	symmetric	matrix	of	rank	NX,	the	eigenvalues	𝜆D(𝑡)	are	real	and	positive.	

The	 next	 step	 is	 to	 define	 a	 sliding	 window	 seismicity	 state	 vector	 𝝍(𝑡).	 	 The	 NX	
components	of	F(𝒙", 𝑡)	are	just	the	NX		time	series	F(𝒙", 𝑡),	summed	over	a	previous	time	
interval		t	=	SDt.  The	nth	component	of 𝝍(𝑡) is then: 

𝜓"(𝑡) 	= 	L F(𝒙", 𝑡′)	𝑑𝑡′
O

OPQ
 

	(5)	

Because	 the	 𝒆D(𝑡)	 are	 orthonormal	 and	 complete,	 𝝍(𝑡)	 can	 be	 expanded	 in	 the	
eigenpatterns	with	expansion	coefficients	ai(t):	

𝝍(𝑡) 	= 	R 𝑎D(𝑡)	𝒆D(𝒙, 𝑡)
D

	

(6)	

In	computing	𝒆D(𝑡),	only	data	for	t'	£	t		are	used.	

The	weighted	correlation	of	the	seismicity	at	time	t	is	then	found	as	the	dot	product	of	
the	power	spectrum	ai(t)2	with	the	vector	of	correlation	eigenvalues.	 	This	dot	product	 is	
then	the	weighted	correlation	value	𝜒(𝑡)	for	the	regional	seismicity:	

𝜒(𝑡) 	≡ 〈l(𝑡)〉 	= 	R 𝜆D(𝑡)	𝑎D(𝑡)X
D

	

(7)	

𝜒(𝑡)	represents	a	Weighted	Correlation	Timeseries	(WCT)	containing	(possibly)	significant	
information	content.		

In	computing	(7),	it	is	found	that	the	number	of	time	series	with	the	required	minimum	
number	of	events	and	therefore	active	grid	boxes,	generally	increases	with	time.		So	in	order	
to	compute	a	continuous	timeseries,	uniformly	valid	for	all	times	t,	both	l(𝑡)	and	𝑎D(𝑡)X	were	
normalized	to	standard	values	of,	respectively,	100	and	1	(Rundle	et	al.,	2021).		

To	compute	the	timeseries	𝜒(𝑡),	we	use	construct	a	state	vector	𝝍(𝑡)	.		As	is	often	the	case	
in	these	machine	learning	methods	(see,	e.g.,	Rouet-Leduc	et	al.,	2017,	2019),	𝝍(𝑡)	consists	
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of	a	sliding	window	of	length	t	=	SDt,	that	advances	in	time	by	the	successive	increment	Dt	
on	each	time	step.		In	other	words,	small	earthquake	activity	is	accumulated	over	the	window	
length	t		and	assigned	to	the	time	t	at	the	end	of	the	sliding	window.		As	our	sliding	window	
we	set	S=	13,	thus	t	=	1	year.			

At	each	time	t,	𝝍(𝑡)	is	expanded	in	the	eigenpatterns	and	the	coefficients	of	expansion	
ai(t)	 are	 computed.	 	 The	 current	 eigenvalues	 𝜆D(𝑡)	 are	 then	 used	 as	 in	 equation	 (7)	 to	
compute	the	value	of	c(t)	 	at	that	time	step.	 	We	plot	c(t)	 	as	a	function	of	time	as	shown	
below,	which	we	interpret	as	a	nowcasting	correlation	timeseries.	

Comparison	of	The	Two	Methods.	
We	 	 have	 applied	 both	methods	 to	 California,	 and	 summarize	 previous	 results	 here,	

together	 with	 some	 new	 analysis.	 We	 begin	 by	 focusing	 on	 the	 region	 centered	 on	 Los	
Angeles	 (34.0522o	 latitude,	 118.2437o	west	 longitude)	 ,	 and	within	 5.0o	 (in	 latitude	 and	
longitude)	of	that	point.		We	consider	small	earthquakes	to	be	those	having	magnitudes	M	³	
3.29	from	1/1/1950	until	12/31/2020.		For	the	time	interval	Dt	as	discussed	above,	we	set	
Dt	=	0.07692	year,	equal	to		1/13	year	or	approximately	1	"lunar	month",	equal	to	4	"weeks"	
of	length	1/52	year.		

For	the	method	used	to	compute	the	WCT	c(t),	the	size	of	the	N	coarse	grained	grid	boxes	
was	taken	to	be	0.33o.		Requiring	a	minimum	of	35	small	earthquakes	over	the	time	period	
from	1/1/1950	to	12/31/2020,	we	find	NX	=	100	of	the	spatial	grid	boxes	can	be	used.		We	
then	constructed	the	correlation	matrix	(1),	and	diagonalized	it	to	find	the	eigenvalues	and	
eigenvectors.		As	noted,	when	we	computed	the	correlation	matrix	at	time	t,	we	used	data	
only	prior	to	that	time.			

In	Figure	2,	we	show	four	orthonormal	eigenpatterns	with	the	high	correlation	values	in	
the	 correlation	 matrix,	 computed	 for	 the	 entire	 time	 period	 	 1/1/1950	 to	 12/31/2020.		
These	 eigenpatterns	 can	 clearly	 be	 recognized	 by	 their	 association	with	 the	 four	 largest	
earthquakes	in	California	during	that	time	period.		Again	for	reference,	Table	1	lists	the	large	
earthquakes	having	magnitude	M	³	6	from	1984	-	present.			

Timeseries.		For	both	timeseries	methods,	we	compute	the	timeseries,		RG(t)	and	c(t),	by	
the	methods	described	above.		These	are	shown	in	Figure	3,	over	the	time	periods	from	1984-
present,	 where	 the	 red	 dashed	 vertical	 lines	 represent	 earthquakes	 having	 magnitudes	
larger	 than	 M	 ³	 6.75,	 and	 the	 black	 dotted	 vertical	 lines	 represent	 earthquakes	 having	
magnitudes	6.0	£	M	<	6.75.	 	The	green	dashdot	line	("decision	threshold"	Dc(TW))	will	be	
discussed	in	the	following.	

Note	that	the	time	series	values	on	the	vertical	axis	are	plotted	on	an	inverted	scale,	so	
that	the	smallest	values	of		RG(t)	and	c(t)	are	at	the	top	of	the	figure,	and	the	largest	values	
at	the	bottom.		As	a	result,	the	two	timeseries	resemble	the	hypothesized	cycle	of	regional	
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stress	accumulation	and	release	that	 is	 thought	 to	be	associated	with	the	elastic	rebound	
hypothesis	of	H.F.	Reid	(Scholz,	2019).		These	time	series	might	then	be	viewed	as	a	proxy	
for	the	regional	tectonic	stress		cycle.			

Since	RG(t)	is	often	used	in	statistical	mechanics	as	a	measure	of	correlation	length,	Figure	
3	implies	that	just	after	a	major	earthquake	occurs,	correlation	length	suddenly	increases.		
Then,	 over	 the	 subsequent	 period	 of	 time,	 correlations	 gradually	 decrease,	 eventually	
reaching	a	low	value	prior	to	the	next	major	earthquake.		This	cycle	of	sudden	correlation	
increase	at	the	time	of	a	major	earthquake,	is	presumably	associated	with	a	sudden	decrease	
in	regional	tectonic	stress.		The	gradual	decrease	of	correlation	following	a	major	event,	is	
then	apparently	associated	with	the	preparation	and	stress	buildup	leading	to	the	next	large	
earthquake.		In	any	case,	the	two	time	series	resemble	the	expected	behavior	of	the	cycle	of	
regional	tectonic	stress	in	seismically	active	areas.	

Time	Series	Prediction.	Given	a	time	series	such	as	those	in	Figure	3,	there	are	a	number	
of	 machine	 learning	 models	 and	 techniques	 that	 have	 been	 developed	 to	 predict	 future	
behavior	of	the	time	series,	given	a	period	of	training	of	the	parameters	in	the	models.		One	
of	these	that	we	briefly	describe	is	the	one-step	walk-ahead	method	based	on	the	random	
forest	algorithm2.			

In	this	method,	the	data	set	of	values	VÎ	{Vi},	i	=	1,...,Ni	,	are	partitioned	into	a	training	set	
and	 a	 test	 set,	 typically	 25%-75%	 training,	 with	 the	 remainder	 in	 the	 test	 set.	 	 The	
parameters	of	model	are	then	adjusted,	and	the	result	is	checked	by	application	to	the	test	
set.		The	idea	is	that	the	model	parameters	are	assigned	using	a	sliding	window	of	NP	time	
series	values,	resulting	in	a		the	prediction	for	the	next	(unknown)	value	of	the	time	series.	
In	the	examples	shown	below,	we	use	NP	=	13	monthly	values	of	the	time	series	to	predict	
the	next	value.			

We	show	time	series	prediction	of	the	time	series	for	RG(t)		and	c(t)	in	Figures	4	and	5,	
respectively.		The	left	panel	in	both	figures	is	shown	for	the	entire	time	period	since	1984,	
with	 the	 original	 blue	 curve	 representing	 the	 time	 series,	 and	 the	 red	 superposed	 curve	
representing	the	time	series	prediction.		The	right	panel	of	each	figure	is	a	zoom	closeup	of	
the	last	~2.5	years	of	the	left	side	panel,	encompassing	the	time	period	of	the	M7.1,	July	5,	
2019	Ridgecrest	earthquake.	

Superficially,	 from	 the	 left	 panels,	 both	 figures	 show	 that	 the	 red	 prediction	 curve	
appears	 to	 predict	 the	 next	 time	 series	 values	 reasonably	well.	 	 However,	 a	 closer	 look	
represented	by	the	right	panel	indicates	that	the	prediction	algorithm	does	not	predict	the	
onset	of	the	large	earthquakes,	but	in	fact	shows	a	delayed	response,	delayed	by	one	time	
step.	

Signal	Detection	and	Information	Content	
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Decision	Thresholds.	 	We	now	turn	to	investigating	the	information	contained	in	the	
correlation	timeseries	RG(t)		and	c(t)	that	is	shown	in	Figure	3	from	1984	to	12/31/2020.		
More	specifically,	we	are	 interested	 in	determining	whether	those	timeseries	contain	any	
information	about	future	large	earthquakes.		This	is	basically	a	problem	in	signal	detection	
in	the	presence	of	noise,	which	was	considered	in	the	1940's	in	association	with	the	advent	
of	radar		(Green	and	Swets,	1966;	Joy	et	al.,	2005).		In	that	application,	the	problem	was	to	
determine	 whether	 an	 observed	 signal	 was	 actually	 a	 true	 radar	 return	 or	 a	 random	
fluctuation.			

The	 researchers	 introduced	 the	 idea	 of	 a	 decision	 threshold,	 where	 if	 the	 signal	 had	
amplitude	higher	than	the	threshold,	it	was	classified	as	a	true	return	(true	positive	=	TP).		
Of	course,	even	 if	 the	signal	was	 large	enough,	 there	was	still	 the	possibility	 that	 it	was	a	
random	 signal	 (false	 positive	 =	 FP).	 	 On	 the	 other	 hand,	 some	 returns	 might	 have	 had	
amplitudes	 less	 than	threshold,	but	still	have	been	real	returns	(false	negative	=	FN).	 	Or	
alternatively,	they	might	have	been	random	fluctuations	(true	negative	=	TN).			

The	problem	is	to	determine	whether	signals	of	future	large	earthquakes	can	be	detected	
by	analysis	of	RG(t)		and	c(t).		We	view	our	problem	as	lying	in	the	domain	of	classification	
via	unsupervised	machine	learning,	sorting	potential	signals	into	the	categories	or	classes	of	
true	positive	(TP),	true	negative	(TN),	false	positive	(FP)	and	false	negative	(FN).			

The	 standard	method	 (Green	and	Swets,	1966;	 Joy	et	 al.,	 2005)	 is	 then	 to	 construct	 a	
Receiver	Operating	Curve	("ROC")	by	plotting	the	true	positive	rate	(TPR):	

𝑇𝑃𝑅	 = 	𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)	

(5)	

against	the	false	positive	rate	(FPR),	defined	in	terms	of	the	specificity	or	true	negative	rate	
(TNR):	

𝐹𝑃𝑅	 = 	1	 − 	𝑇𝑁𝑅 = 	𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)	

(6)	

TPR	is	also	called	the	Recall	or	Hit	Rate,	and	FPR	is	also	defined	as	1-specificity	or	the	False	
Alarm	Rate.	 	As	is	well	known,	Recall	measures	how	well	the	model	performs	at	correctly	
predicting	positive	classes.			

On	the	other	hand,	PPV	or	Precision	measures	how	well	the	model	performs	when	the	
prediction	is	positive:	

𝑃𝑃𝑉	 = 	𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)	

(7)	

Additionally,	ACC	or	Accuracy	measures	the	fraction	of	correct	predictions,	either	TP	or	TN:	
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𝐴𝐶𝐶	 = 	 (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑁	 + 	𝐹𝑃	 + 	𝑇𝑁)	

(8)	

Inspection	of	the	time	series	RG(t)		and	c(t)	shown	in	Figure	3		indicates	that	the	largest	
earthquakes	having	magnitude	M	³	Ml	tend	to	occur	when	the	correlation	timeseries	RG(t)		
and	c(t)	are	near	a	small	minimum	value	(the	"floor").		To	proceed,	at	each	time	t		we	define	
a	future	time	window	[t,	t+	TW],	where	TW		is	the	duration	of	the	window.		We	then	select	an	
ensemble	of	decision	thresholds	𝐷e(𝑇f)	to	test	RG(t)		and	c(t).		The	decision	thresholds	sweep	
through	all	possible	values	to	define	the	ensemble	of	values	for	TP,	FP,	FN,	TN.	

For	each	such	decision	threshold,	we	accumulate	the	following	statistics.		If	the	condition	
{RG(t),	 c(t)}	 £	 𝐷e(𝑇f)	 exists,	 we	 take	 this	 as	 an	 indication	 ("prediction")	 that	 a	 large	
earthquake	having	magnitude	M	³	Ml	will	occur	during	the	future	time	window	[t,	t+	TW].		On	
the	other	hand,	if	{RG(t),	c(t)}	 	>	𝐷e(𝑇f),	the	"prediction"	is	that	no	large	earthquake	will	
occur	during	the	future	time	window.	Thus:	

• If	{RG(t),	c(t)}	 	£	𝐷e(𝑇f)	 	("predicted":	yes),	and	the	future	time	window	does	
contain	at	least	1	large	earthquake	M	³	Ml,	we	increment	TP®TP+1.	i.e,	a	true	
positive.	

• If	{RG(t),	c(t)}		£	𝐷e(𝑇f)	("predicted":	yes),	and	the	future	time	window	does	not	
contain	at	least	1	large	earthquake	M	³	Ml,	we	increment	FP®FP+1.	i.e,	a	false	
positive.	

• If	 {RG(t),	c(t)}	 	>	𝐷e(𝑇f)	 ("predicted":	no),	 and	 the	 future	 time	window	does	
contain	at	least	1	large	earthquake	M	³	Ml,	we	increment	FN®FN+1.	i.e,	a	false	
negative.	

• If	{RG(t),	c(t)}		>	𝐷e(𝑇f)	("predicted":	no),	and	the	future	time	window	does	not	
contain	at	least	1	large	earthquake	M	³	Ml,	we	increment	TN®TN+1.	i.e,	a	true	
negative.	

Since	these	the	quantities	TP,	FP,	FN,	TN	only	appear	in	ratios,	in	the	results	shown	here,	
we	list	the	quantities	TP,	FP,	FN,	TN	as		normalized	by	the	sum	TP+FP+FN+TN,	e.g.:	

𝑇𝑃 → 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)	

(9)	

etc.		Thus	all	the	normalized	quantities	TP,	FP,	FN,	TN	listed	here	lie	within	the	interval	[0,1].		

Receiver	 Operating	 Characteristic.	 	 	 Figure	 6	 shows	 a	 comparison	 of	 the	 Receiver	
Operating	 Characteristics	 (ROC)	 diagrams	 for	 RG(t)	 	 and	 c(t),	 obtained	 by	 plotting	 TPR	
against	FPR.	 	The	plot	for	RG(t)	 	is	at	left,	and	that	for	c(t)	is	at	right.	 	These	diagrams	are	
computed	for	the	time	window	TW	=	3	years.		The	red	curve	is	the	ROC	curve	in	both	panels.	
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As	 is	 well	 known	 (Green and Swets, 1966),	 a	 random	 predictor	 (no	 information)	 is	
represented	by	the	condition	:	

𝑇𝑃𝑅	 = 	𝐹𝑃𝑅	

(10)	

On	the	ROC	plots	for	RG(t)		and	c(t),	this	line	is	shown	as	the	diagonal	black	line	from	
[0,0]	to	[1,1].		To	emphasize	that	the	diagonal	line	does	indeed	represent	the	ROC	for	a	
random	predictor,	we	computed	500	random	timeseries	by	sampling	from	RG(t)		and		c(t)	
with	replacement	(bootstrap	method).		These	are	represented	by	the	mass	of	cyan-colored	
lines	in	the	figures.		The	1	s		confidence	level	is	indicated	by	the	ellipsoidal	dotted	line	
enclosing	the	solid	black	random	predictor	line.			

The	fact	that	the	red	curve	lies	substantially	above	the	random	predictions	indicates	that	
there	are	signals	of	large	earthquakes	contained	in	RG(t)		and		c(t).		In	fact,	the	area	under	
the	red	line	corresponding	to	RG(t)		and		c(t)	is	a	measure	of	skill,	with	values	lying	between	
[0,1].			

For	the	random	predictor,	(black	diagonal	line)	the	skill	score	=	0.5.		It	can	be	seen	that	
the	 area	 under	 the	 red	 curve	 in	 both	 figures	 evidently	 has	 more	 area	 line	 beneath	 it,	
indicating	 skill	better	 than	 random.	 	Values	of	 the	 skill	 score	 for	both	RG(t)	 	 and	c(t)	 are	
shown	in	in	the	figure	and	in	Table	2.				

Optimal	Decision	Thresholds.		If	we	were	to	use	the	data	in	the	ROC	curve	in	a	practical	
way,	 we	 would	 need	 to	 determine	 the	 optimal	 decision	 threshold,	 corresponding	 to	 an	
optimal	 point	 on	 the	 ROC	 curve	 for	 each	 value	 of	 𝑇f	 and	 the	 large	 earthquakes	 to	 be	
nowcasted.	 	 The	 possible	 presence	 of	 signals	 for	 large	 earthquakes	 motivates	 us	 to	 use	
Shannon	 information	entropy	 IS	 (Shannon,	1948)	as	a	measure	of	 information	content	of	
points	along	the	ROC	curve:	

𝐼i = 	𝑝 logX 𝑝 + (1 − 𝑝) logX(1 − 𝑝)	

(11)	

where	p	is	an	appropriately	chosen	probability.		Thus	we	are	led	to	seek	the	value	of	decision	
threshold	𝐷e(𝑇f)	that	optimizes	IS	for	a	given	value	of	𝑇f.	

As	an	example	of	this	approach,	we	show	in	Figures	6,	and	Table	2,	the	optimal	values	for	
TP,	 FP,	 FN,	 TN	 that	 arise	 from	 using	 the	 equation	 (11)	 and	 the	 probability	 measure	 of	
precision.		In	Figure	6,	the	optimal	values	are	represented	by	the	vertical	dashed	blue	lines.		
Figure	7	is	a	plot	of	the	precision	as	a	function	of	the	decision	threshold	𝐷e(𝑇f)	for	the	same	
time	window	𝑇f=	3	years,	corresponding	to	the	ROC	plots	of	Figure	6.					

We	also	optimized	the	values	of	these	quantities	using	hit	rate	(recall)	and	accuracy,	but	
in	general	found	the	results	were	not	as	good	as	using	precision.			
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Statistical	Tests	of	Significance	

To	test	whether	information	is	contained	in	the	time	series	RG(t)		and		c(t),	we	take	as	our	
null	hypothesis	the	idea	that	any	information	that	may	be	apparent	in	RG(t)		and		c(t)	is	the	
result	of	a	purely	random	process,	and	that	RG(t)		and			c(t)	might	be	a	random	time	series.			
Definition	of	all	quantities	considered	is	given	in	Table	2,	columns	1	and	2.		Note	that	TP,	FP,	
FN,	TN	have	been	normalized	as	in	equation	(7).		

Table	2	also	contains	the	optimal	values	of	the	various	quantities	TP,	FP,	FN,	TN,	hit	rate,	
precision,	specificity,	accuracy	and	skill	in	columns	3	and	4	for	RG(t)		and		c(t).			Columns	5	
and	6	in	Table	2	display	the	means	and	standard	deviations	for	the	random	set	of	time	series	
{	 RG,R(t)	 ,	 cR(t)}	 evaluated	 at	 the	 same	 particular	 decision	 thresholds	 𝐷e(𝑇f)	 defined	
previously	by	optimizing	the	precision	of	RG(t)		and		c(t).		Thus	columns	5	and	6	contain	the	
same	statistical	quantities	listed	in	columns	1	and	2,	evaluated	for	a	random	predictor.			

As	stated,	the	random	predictor	was	constructed	by	means	of	a	bootstrap	approach.		The	
time	series	RG(t)		and		c(t)	were	repeatedly	sampled	randomly	with	replacement	to	construct	
500	random	time	series	that	we	can	designate	as	the	set	of	time	series	{	RG,R(t)	,	cR(t)}.			

For	all	of	the	statistical	quantities	identified	in	column	1,	we	then	compute	the	Z-statistic:	

	𝑍	 = 	
𝑆 − 𝜇n
𝜎n

	

(10)	

where	S	 is	 the	statistical	quantity	(TP,	FP,	FN,	TN,	 	etc.)	obtained	by	optimizing	c(t).	 	The	
quantities	𝜇n 	and	𝜎n	are	the	means	and	standard	deviations	of	the	ensemble	of	random	time	
series	{	RG,R(t)	,	cR(t)},	also	evaluated	at	the	same	optimized	decision	thresholds	𝐷e(𝑇f).			

From	the	Z-statistics,	we	then	calculate	the	P-values	shown	in	columns	7	and	8	in	Table	
2.		With	few	exceptions,	it	can	be	seen	that	for	the	most	part,	P	<	0.05,	a	standard	criterion	
for	rejecting	the	null	hypothesis	at	the	95%	confidence	level.		In	words,	the	observed	values	
of	 the	quantities	 in	 column	1	 listed	 in	 columns	3	and	4	are	unlikely	 to	be	 the	 result	of	 a	
random	process.		There	are	several	exceptions	to	this	general	finding	for	the	shorter	𝑇f	=	6	
months,	but	for	𝑇f	=	3	years,	all	quantities	reject	the	null	hypothesis	at	the	95%	confidence	
level	with	the	exception	of	skill	score.		

Discussion	
We	are	led	to	the	conclusion	that	there	is	evidently	information	content	embedded	within	

RG(t)		and		c(t),	and	that	there	are	optimal	decision	thresholds	that	can	be	determined	by	a	
procedure	similar	to	that	described	above.		From	a	practical	perspective,	one	might	imagine	
that	these	results	might	be	used	to	identify	signals	for	optimal	threshold	values.		These	could	
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be	in	the	form	of	"alerts"	of	future	major	earthquakes	that	are	declared	when		{RG(t),	c(t)}	£	
𝐷e(𝑇f)	for	pre-defined	values	of	𝐷e(𝑇f).			

From	examination	of	Table	2,	columns	7	and	8,	it	would	appear	that	the	time	series	RG(t)			
performs	somewhat	better	than	c(t).		It	should	be	noted	that	the	time	series	RG(t)	has	been	
optimized	using	machine	methods,	while	c(t)	has	not,	which	may	account	for	the	difference.		
This	is	a	subject	for	furture	work.	

Given	 the	 fact	 that	 the	 time	 series	 RG(t)	 and	 c(t)	 appear	 to	 contain	 some	 level	 of	
information	 about	 the	 hazard	 posed	 by	 future	 earthquakes,	 its	 use	 in	 nowcasting	
applications	 would	 seem	 to	 have	 promise.	 	 Future	 investigations	 may	 allow	 further	
refinement	and	clarification	of	whatever	information	this	and	similar	time	series	contain.	

The	elastic	rebound	theory	of	earthquakes	(Richter, 1958)	proposes	that	tectonic	stresses	
build	up,	recharge	or	increase,	in	a	region	following	a	large	earthquake	until	another	large	
earthquake	occurs	and	stress	discharges	or	decreases.	At	that	point	the	stresses	are	suddenly	
reduced,	and	a	new	cycle	of	stress	recharge	and	discharge	begins.		By	presenting	our	results	
in	the	manner	shown	in	Figures	3-6,	the	similarity	with	the	elastic	rebound	theory	can	be	
seen.			

Our	present	results	contribute	to	the	development	of	seismic	nowcasting	methods	that	
we	have	discussed	earlier	(Rundle et al., 2016; 2018; 2019a,b).		In	previous	methods,	elastic	
rebound	 is	 introduced	as	a	 constraint,	by	 counting	small	 earthquakes	since	 the	 last	 large	
earthquake.	 In	 contrast	 using	 this	method,	 elastic	 rebound	 emerges	 naturally,	 in	 that	 it	
follows	directly	from	time-dependent	properties	of	the	bursts.		Another	difference	is	that	the	
seismic	nowcasting	method	produces	a	cumulative	distribution	function,	or	equivalently	a	
survivor	distribution	of	 future	 large	earthquake	activity.	By	contrast,	 the	present	method	
computes	an	observable	property	of	the	region	with	a	clear	physical	meaning.	

Other	studies	have	shown	that	large	earthquakes	tend	to	occur	in	relatively	small	regions	
where	small	earthquake	activity	has	been	the	greatest	for	a	number	of	years	(Rundle	et	al.,	
2003;	Tiampo	et	al.,	2002a,b,c;	Holliday	et	al.,	2006a,b;	2007;	2008).	 	This	 is	essentially	a	
consequence	of	the	universal	applicability	of	the	Gutenberg-Richter	relation	(Rundle	et	al.,	
2016;	 2018).	 The	 RELM	 earthquake	 forecasting	 test	 suggests	 that	 this	 approach	may	 be	
fruitful	(Holliday	et	al.,	2007;	Lee	et	al.,	2011)A	

A	 strategy	 to	 anticipate	 major	 earthquakes	 that	 combines	 methods	 such	 as	 those	
proposed	by	(e.g.,	Rundle	et	al.,	2003)	to	estimate	candidates	for	spatial	locations	of	future	
events,	combined	with	the	ensemble	time	series	methods	discussed	here,	might	be	useful	to	
consider.		A	question	that	remains	is	the	applicability	of	the	methods	described	here	to	other	
seismically	active	regions,	which	in	turn	depends	on	the	completeness	of	the	seismic	catalog	
over	a	wide	range	of	magnitudes.		A	major	advantage	of	the	Southern	California	region	is	that	
the	 catalog	 is	 complete	 to	 small	 magnitudes,	 a	 property	 that	 is	 not	 generally	 the	 case	
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elsewhere.		Future	work	will	be	directed	at	answering	this	question	as	it	will	be	important	
to	test	the	method	in	other	seismically	active	areas.	
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Figure and Table Captions 

Figure 1.  Examples of moderate bursts having M ³ 3.29.  Symbol color:  cooler colors represent 
earlier events in the burst, hotter colors later events.  Symbol size represents magnitudes.  In each 
figure, the right side is a chart of magnitudes of the sequence of events in the burst.  a) and b) 
represent bursts in which the largest earthquake is not the first.  c) and d) represent bursts associated 
with large earthquakes having M ³ 6 and their aftershocks. In addition, c) illustrates events 
associated with the M6.2 Elmore Ranch and M6.6 Superstition Hills earthquakes of November 
11,1987.  d) illustrates events associated with the M6.9 earthquake of October 17, 1989. 
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Figure	2.		Four	prominent	eigenpatterns	having	high	regional	correlation	eigenvalues,	near	
the	 locations	 of	 a)	 the	April	 4,	2010	M7.2	 El	Mayor	 Cucupah;	 b)	 the	 June	28,	 1992	M7.3	
Landers	 +	 October	 16,	M	 7.1	 1999	Hector	Mine	 events;	 c)	 July	 4,	 2019	M7.1	 Ridgecrest	
earthquake;	and	the	d)	October	17,	1989	M6.9	Loma	Prieta	earthquake.		Small	earthquake	
activity	at	locations	with	(hot=reds/cool=blues)	color	is		positively	correlated	with	activity	at	
other	(hot/cool)	color	locations	and	anticorrelated	with	activity	at	(cool/hot)	color	locations.		
a)	El	Mayor	Cucupah	pattern(6.2%	of	total	correlation).		b)	Landers-Hector	pattern	(5.5%	of	
total	correlation).		c)	Ridgecrest	pattern	(3.6%	of	total	correlation).		d)	Loma	Prieta	pattern	
(2.7%	of	total	correlation).				Region	of	computation	is	shown	as	the	shaded	regions	in	the	
figures,	within	5o	 latitude	and	5o	 longitude	of	Los	Angeles,	CA.	 	Data	used	to	compute	the	
patterns	spanned	the	interval	from	1/1/1950	to	12/31/2020.	
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Figure 3.  Comparison of two time series, a) RG(t) and b) c(t)		from	1984	through	2020.		RG(t) 
is calculated as a filtered optimized ensemble average of radii of gyration of small earthquake 
bursts as a function of time.  Note that the average radius of gyration of a cluster of events is often 
taken to be a measure of the correlation length in statistical mechanics.  c(t)	 is	 the	weighted	
correlation	 time	 series	 computed	 from	 principal	 component	 analysis	 of	 the	 gridded	
timeseries	of	small	earthquake	events.		In	both	figures,	vertical	red	dashed	lines	represent	
large	earthquakes	M≥6.9,	vertical	dotted	lines	represent	earthquakes	6. 9 >M	≥	6.0.		Note	
that	the	vertical	scale	is	inverted	so	that	small	values	of	RG(t) and b) c(t)	are	at	the	top	of	the	
figure,	so	values	increase	towards	the	bottom.		The	horizontal	green	dash	dot	line	in	earch	
figure	 represents	 the	 decision	 threshold	𝐷e(TW)	 for	 the	 time	 window	 TW	 =	 3	 years	 as	
discussed	in	the	text.		For	RG(t) time series at the left, 𝐷e(TW)		=	4.15.		For	c(t)	time	series	at	
right,	𝐷e(TW)		=	1.216.			
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Figure	4.		Time	series	forecasting	for	RG(t) time series by	a	1	step	walk-forward	algorithm	
using	the	random	forest	method	adapted	from	the	scikit-learn	library	of	machine	learning	
methods	[1].		In	this	application,	we	use	13	features	in	the	feature	vector,	representing	1	year	
of	prior	data	to	forecast	the	next	time	series	value	in	the	future.		Blue	curve	with	dots	at	left	
panel	is	the	same	curve	as	shown	in	Figure	3	left.		The	red	curve	overlying	the	blue	curve	is	
the	time	series	 forecast.	 	The	 left	panel	seems	to	suggest	 that	 the	method	has	promise	at	
forecasting	future	values	of	the	curve.		However,	the	right	panel	is	a	zoomed	version	of	the	
same	 curve	 for	2018	 to	2020,	 showing	 that	 the	 forecast	 does	 not	 correctly	 anticipate	 or	
forecast	the	large	M7.1	July	5,	2019	Ridgecrest	earthquake.		The	same	is	true	for	the	other	
large	earthquakes	upon	closer	examination.	
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Figure	5.		Similar	to	Figure	4,	Figure	5	represents	a	time	series	forecast	for	c(t) time series 
by	a	1	step	walk-forward	algorithm	using	the	random	forest	method	adapted	from	the	scikit-
learn	library	of	machine	learning	methods	[2].		In	this	application,	we	also	use	13	features	in	
the	feature	vector,	representing	1	year	of	prior	data	to	forecast	the	next	time	series	value	in	
the	future.		Blue	curve	with	dots	at	left	panel	is	the	same	curve	as	shown	in	Figure	3	right.		
The	red	curve	overlying	the	blue	curve	is	the	time	series	forecast.		The	left	panel	seems	to	
suggest	that	the	method	has	promise	at	forecasting	future	values	of	the	curve.		However,	the	
right	panel	is	a	zoomed	version	of	the	same	curve	for	2018	to	2020,	showing	that	the	forecast	
does	not	correctly	anticipate	or	forecast	the	large	M7.1	July	5,	2019	Ridgecrest	earthquake.		
The	same	is	true	for	the	other	large	earthquakes	upon	closer	examination.	
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Figure	6.		Receiver	Operating	Characteristic	(ROC)	diagram	for	two time series, a) RG(t) and 
b) c(t)	 	 using	 data	 from	 1960	 through	 2020.	 	 Red	 curve	 is	 the	 Receiver	 Operating	
Characteristic	(ROC)	diagrams	for	 the	time	series	a)	RG(t) at left panel and	b)	c(t)	at	right	
panel,	shown	in	Figure	3,	obtained	by	systematically	varying	the	decision	threshold	𝐷e(𝑇f)	
as	described	in	the	text	for	major	earthquakes	having	magnitudes	M³6.75,	and	computing	
the	true	positive	rate	(hit	rate	or	recall)	TPR and plotting against the false positive rate (1 - 
specificity) FPR.  The black diagonal	black	line	from	lower	left	to	upper	right	is	the	random	
predictor,	TPR	=	FPR.		To	emphasize	that	the	diagonal	line	does	indeed	represent	the	ROC	for	
a	random	predictor,	we	constructed	500	random	timeseries	by	sampling	from	RG(t) and c(t)	
panels,		respectively,	with	replacement.		These	are	represented	by	the	mass	of	cyan	colored	
lines	 in	 the	 figures.	 	 The	 1	s	 	 confidence	 level	 is	 indicated	 by	 the	 ellipsoidal	 dotted	 line	
enclosing	the	solid	black	random	predictor	 line.	 	The	blue	dashed	vertical	and	horizontal	
lines	represent	the	values	of	TPR	and	FPR	obtained	by	optimizing	the	precision	TP/(TP	+	FP)	
for	the	optimal	value	of	𝐷e(𝑇f)	for	the	ROC	using	the	time	window	of	𝑇f	=	3	years.	
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Figure 7.  Similar	to	Figure	6,	the	red	curve	in	Figure	7	shows	the	precision	TP/(TP	+	FP)	as	
a	function	of	the	decision	threshold	𝐷e(𝑇f)	applied	to	the	time	series	a)	RG(t) at left panel and	
b)	c(t)	at	right	panel,	as		shown	in	Figure	3.		The solid black 	line	is	the	random	predictor.		To	
emphasize	 that	 the	 solid	 black	 line	 does	 indeed	 represent	 the	 precision	 for	 a	 random	
predictor,	we	constructed	500	random	timeseries	by	sampling	from	RG(t) and	c(t),	from	the	
left	and	right	panels,	respectively,	with	replacement.		These	are	represented	by	the	mass	of	
cyan	colored	lines	 in	 the	 figures.	 	The	1	s	 	 confidence	 level	 is	 indicated	by	the	ellipsoidal	
dotted	line	enclosing	the	solid	black	random	predictor	line.		The	blue	dashed	vertical	lines	
represent	 the	 optimal	 values	 of	 decision	 threshold	 obtained	 by	 optimizing	 the	 Shannon	
information	entropy,	using	precision	as	the	probability	for	a	time	window	𝑇f	=	3	years.	
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Table 1.  Large earthquakes in the Los Angeles region between January 1, 1984 and December 
31, 2020.  These correspond to the vertical lines in Figures 3-5. 
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Table	2.		Comparison	of	optimal	data,	obtained	by	optimizing	the	Shannon	information	from	
entropy	of	the	precision	variable,		to	random	data	for	a	time	window	𝑇f	=	3	years	for	both	
RG(t) and s c(t)		time	series	.		Optimal	values	of	decision	threshold	𝐷e(𝑇f)	are	found	by	this	
procedure.		The	null	hypothesis	is	that	our	optimal	precision	data	is	generated	by	a	random	
process.	 	 Thus	 we	 compare	 our	 values	 to	 those	 generated	 by	 the	 random	 process	 and	
calculate	a	one-sided	P-statistic	based	on	Z-values	using	standard	procedures.	

	

	

	


